###
Objects in Motion

This resource provides flexible alternate or additional learning activities for students learning about the concepts of distance, speed, and acceleration. IPC TEKS (4)(A)

###
What’s Trending with the Elements?

This resource, aligned with Chemistry TEKS (5)(C), provides alternative or additional tier-one learning options for students using the periodic table to identify and explain trends.

###
Domain and Range: Numerical Representations

Given a function in the form of a table, mapping diagram, and/or set of ordered pairs, the student will identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Transformations of Square Root and Rational Functions

Given a square root function or a rational function, the student will determine the effect on the graph when f(x) is replaced by af(x), f(x) + d, f(bx), and f(x - c) for specific positive and negative values.

###
Transformations of Exponential and Logarithmic Functions

Given an exponential or logarithmic function, the student will describe the effects of parameter changes.

###
Solving Square Root Equations Using Tables and Graphs

Given a square root equation, the student will solve the equation using tables or graphs - connecting the two methods of solution.

###
Functions and their Inverses

Given a functional relationship in a variety of representations (table, graph, mapping diagram, equation, or verbal form), the student will determine the inverse of the function.

###
Rational Functions: Predicting the Effects of Parameter Changes

Given parameter changes for rational functions, students will be able to predict the resulting changes on important attributes of the function, including domain and range and asymptotic behavior.

###
Valence Shell Electron Pair Repulsion

Given illustrations or descriptions, students will predict the shape of molecules based upon the extent of the electron pair electrostatic repulsion.

###
Chemical Bonding: Metallic Bonds

Given scenarios or diagrams, students will describe the nature of metallic bonding and explain properties such as thermal and electrical conductivity, malleability, and ductility of metals.

###
Nomenclature: Covalent Compounds

Given descriptions, diagrams, or scenarios, students will write and name the chemical formulas of binary covalent compounds.

###
Ionic Bonds: Electron Dot Formulas

Given descriptions, diagrams, scenarios, or chemical symbols, students will model ionic bonds using electron dot formulas.

###
Moles and Molar Mass

Given descriptions or chemical formula of a substance, students will use the concept of a mole to relate atomic mass to molar mass.

###
Types of Solutions: Saturated, Supersaturated, or Unsaturated

Given scenarios, graphs, diagrams, or illustrations, the student will determine the type of solution such as saturated, supersaturated, or unsaturated.

###
Conservation of Momentum

This resource was created to support TEKS IPC(4)(E).

###
Domain and Range: Graphs

Given a function in graph form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Domain and Range: Function Notation

Given a function in function notation form, identify the domain and range using set notation, interval notation, or a verbal description as appropriate.

###
Domain and Range: Verbal Description

The student will be able to identify and determine reasonable values for the domain and range from any given verbal description.

###
Domain and Range: Contextual Situations

The student will be able to identify and determine reasonable values for the domain and range from any given contextual situation.

###
Modeling Data with Linear Functions

Given a scatterplot where a linear function is the best fit, the student will interpret the slope and intercepts, determine an equation using two data points, identify the conditions under which the function is valid, and use the linear model to predict data points.